Deep-Learning-Based Scalp Image Analysis Using Limited Data
نویسندگان
چکیده
The World Health Organization and Korea National Insurance assert that the number of alopecia patients is increasing every year, approximately 70 percent adults suffer from scalp problems. Although a genetic problem, it difficult to diagnose at an early stage. deep-learning-based approaches have been effective for medical image analyses, challenging generate deep learning models detection analysis because creating dataset challenging. In this paper, we present approach generating model specialized achieves high accuracy by applying data preprocessing, augmentation, ensemble analyses. We use containing 526 good, 13,156 mild, 3742 moderate, 825 severe images. was further augmented normalization, geometry-based augmentation (rotate, vertical flip, horizontal crop, affine transformation), PCA augmentation. compare performance single using ResNet, ResNeXt, DenseNet, XceptionNet, ensembles these models. best result achieved when ResNet were combined achieve 95.75 F1 score 87.05.
منابع مشابه
Content-Based Image Retrieval using Deep Learning
Content-Based Image Retrieval using Deep Learning Anshuman Vikram Singh Supervising Professor: Dr. Roger S. Gaborski A content-based image retrieval (CBIR) system works on the low-level visual features of a user input query image, which makes it difficult for the users to formulate the query and also does not give satisfactory retrieval results. In the past image annotation was proposed as the ...
متن کاملTopic Based Sentiment Analysis Using Deep Learning
In this paper , we tackle Sentiment Analysis conditioned on a Topic in Twitter data using Deep Learning . We propose a 2-tier approach : In the first phase we create our own Word Embeddings and see that they do perform better than state-of-the-art embeddings when used with standard classifiers. We then perform inference on these embeddings to learn more about a word with respect to all the topi...
متن کاملPorosity classification from thin sections using image analysis and neural networks including shallow and deep learning in Jahrum formation
The porosity within a reservoir rock is a basic parameter for the reservoir characterization. The present paper introduces two intelligent models for identification of the porosity types using image analysis. For this aim, firstly, thirteen geometrical parameters of pores of each image were extracted using the image analysis techniques. The extracted features and their corresponding pore types ...
متن کاملDeep Bayesian Active Learning with Image Data
Even though active learning forms an important pillar of machine learning, deep learning tools are not prevalent within it. Deep learning poses several difficulties when used in an active learning setting. First, we have to handle small amounts of data. Recent advances in deep learning, on the other hand, are notorious for their dependence on large amounts of data. Second, many acquisition func...
متن کاملAutomatic Image-Based Plant Disease Severity Estimation Using Deep Learning
Automatic and accurate estimation of disease severity is essential for food security, disease management, and yield loss prediction. Deep learning, the latest breakthrough in computer vision, is promising for fine-grained disease severity classification, as the method avoids the labor-intensive feature engineering and threshold-based segmentation. Using the apple black rot images in the PlantVi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Electronics
سال: 2023
ISSN: ['2079-9292']
DOI: https://doi.org/10.3390/electronics12061380